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A general kinetic model for the polymerization ofmultifunctional monomers RY s valid up to the gel point has 
been presented, which accounts for the intramolecular reactions. In this model, various molecular species 
have been distinguished on the basis of the total number of intramolecular bonds existing on them. Various 
reactions leading to formation and depletion of a molecular species of given degree of polymerization are 
identified and the differential mole balance equations for these have been written down. The intramolecular 
rate constant has been assumed to be that proposed by Plat~ and Noah (based on their Monte Carlo studies of 
intramolecular reactions) and the various mole balances have been solved numerically. Numerical 
computations confirm that, as the gel point is approached, larger polymer chains are formed and these have a 
higher tendency to react intramolecularly. However, even at high conversions, the average number of rings 
per polymer chain remains small, which is consistent with experimentally observed results. 

(Keywords: step-growth polymerization; multifunctional monomers; intramolecular reactions; batch reactors; cyclic 
polymerization; gelation) 

INTRODUCTION 

There are several industrially important systems (e.g. 
polyesters from adipic acid or phthalic anhydride and 
glycerol or pentaerythritol (alkyd resins); curing of epoxy 
prepolymers with diamines; curing of phenol 
formaldehyde polymers with hexamethylene tetramine; 
etc.) that involve the use of compounds with 
functionalities larger than 2. In these polymerizations, 
branched molecules are formed at low conversions of 
functional groups. At some definite conversion, some of 
these branched molecules are found to convert into an 
infinite network structure of macroscopic dimensions, 
called a gel. This phenomenon occurs long before the 
functional groups are completely consumed, and the 
point at which it occurs is referred to as the critical or gel 
point. Experimentally, the gel point is recognized as the 
state when the viscosity of the reaction mass becomes 
infinite and gas bubbles fail to rise up through it. 

The study of nonlinear step-growth polymerizations is 
more complex than the linear case, and several alternative 
approaches have been taken by different workers in this 
area to model the process. Flory ~-3 and Stockmayer 4-7 
have approached the problem by determining the 
probabilities of finding various branched molecular 
structures in the reaction mass. Thereafter, they have used 
these probability distributions to compute the number- 
and weight-average molecular weights of the polymer 
before gelation. Their approach, however, becomes 
exceedingly complex for systems of industrial importance. 
Gordon and coworkers a-15 have used the theory of 
stochastic branching processes, also called cascade 
theory, with vectorial probability generating functions. 

* To whom correspondence should be addressed. 

The molecular weight averages can be directly determined 
using this approach without first determining the 
molecular weight distribution, but the technique is 
conceptually very complex and is tedious to apply to 
systems of practical importance. These techniques, 
however, are easier to use than the earlier theories of Flory 
and Stockmayer, particularly for more complex 
polymerization systems. The rate theory proposed by 
Stanford and Stepto 16-19 considers the subsets of states 
of monomer units but adopts the traditional statistical 
approach of Flory. One defines the existence probabilities 
of molecular species rather than those of structural units 
in terms of functional groups. Given the existence 
probabilities of molecular species in terms of the extent of 
reaction, the rate theory evaluates the rates at which the 
species interconvert as functions 0 f the extent 0 f reaction. 
Intramolecular reaction has been introduced as a 
perturbation to the resulting set of independent 
differential equations with the sum of existence 
probabilities normalized to unity. The technique 
proposed by Macosko, Miller and coworkers 2°-24 is of 
more recent origin, is easier conceptually as well as 
mathematically, and yields results that are identical to 
those obtained using the method of Gordon and 
coworkers. The kinetic approach has also been used 
recently25- 32 to predict chain length distributions and the 
onset ofgelation, both for batch reactors 2S'27'2s as well as 
for homogeneous continuous-flow stirred tank reactors 
(HCSTRs)29-32. The kinetic approach is particularly well 
suited for modelling nonlinear polymerizations in 
HCSTRs. In fact, probabilistic techniques have not yet 
been applied for this purpose. For batch reactors, the 
kinetic and probabilistic methods give identical results for 
most cases. Statistically speaking, however, these 
approaches are not equivalent because, in the kinetic 
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approach, the integrity of the existing structures and 
information on the formation history is preserved; 
whereas, in the approach of Gordon and coworkers, 
where the final assembly of molecules is generated from 
building blocks, it is not. In fact, Mikes and Dusek 32 have 
shown, using a Monte Carlo method to simulate these 
systems in batch reactors that, even though in most cases 
these two techniques give virtually the same results, there 
are some special cases where they differ. 

The experimental verification of the critical conversion 
for the onset ofgelation in nonlinear polymerizations has 
been a subject of intensive research activity 2s,3a-4°. 
Recently, Stafford 25 has compiled the available 
information and has compared the results with theoretical 
predictions. It has been found that, even though in some 
systems the onset of gelation corresponds to the 
theoretically predicted conditions when Mw--,o~, results 
on several other systems are better explained if the critical 
point is defined empirically as that where M,~o~.  
However, this is theoretically the wrong basis for the gel 
point 41. 

The deviation of experimental results from theoretical 
predictions in the pre-gel region has been attributed to the 
presence 0 fintramolecular reactions 1'3 ~,39. Experimental 
results on an RIA 3 + R2B 2 system 42 (poly(oxypropylene 
triol)+hexamethylene diisocyanate in bulk and in 
benzene at 70°C) and many other systems 43-48 reveal that 
the average number of ring structures per molecule 
increases with conversion but remains small all the way 
up to the gel point. The ultimate value of this quantity at 
the gel point, however, depends upon the chain 
flexibilities, molar masses and functionalities of the 
reactants 39. Any meaningful modelling exercise must, 
therefore, account for intramolecular reactions. In fact, 
Stepto and coworkers 43'44 find that the properties of the 
network material formed can be markedly affected by 
these reactions. 

Several attempts have been made to study the effect of 
intramolecular reactions theoretically, and these have 
been reviewed recently by Stepto 4~. Most of these 
studies 12'14'49 use the cascade theory. Experimental 
confirmation of these theoretical results, both for the gel 
point as well as for the variation of the average number of 
ring structures per molecule with conversion in the pre-gel 
region, is still to be made 41'43. The kinetic approach has 
also been extended to account for intramolecular 
reactions in nonlinear polymerization 5°. Initial results of 
Temple 5° on R1A 3 + R2B 2 systems, which were limited to 
very low conversion due to the complexity of the 
equations, reveal that the cascade theory underestimates 
the effect of intramolecular reactions, a discrepancy that 
has also been referred to by Mikes and Dusek 32 using 
Monte Carlo generation of polymer chains on the 
computer. 

Two approaches have been taken in the literature to 
model the rate constants for intramolecular reactions 41. 
In one approach, the rate of reaction ~i.P,., between two 
given functional groups located i monomeric units apart 
in a molecule P., is written a s  4 1 ' s L 5 2  

( 1 f 3 \3/2 1 ] kiP,,] 
(1) 

where k is the intrinsic reactivity of functional groups (and 
is the same as that used for intermolecular reactions) and I 

is the backbone bond length. In equation (1) v is the 
number of backbone bonds per monomeric unit (so that vi 
is approximately the number of backbone bonds between 
the reacting functional groups) and NA is the Avogadro 
number. 

In the second approach 53'54 the rate of removal of 
species C, j  by cyclization is written as k[C,,,j]Z,j and 
chains with intramolecular cycles are generated on a 
computer using the Monte Carlo technique to obtain Z,,.j. 
Here Z,,j is the probability that a molecule of chain length 
n undergoes cyclization by intramolecular reaction of two 
functional groups separated by j repeat units, There are 
several simplifying assumptions in deriving equation (1) 
that are overcome in this analysis. It was found that the 
results of this second approach could be fitted empirically 
by the following equation: 

,~,,j = a(n)j + b(n) (2) 

up to a certain value of j, where a'and b are constants 
depending on n. 

In this paper, an alternative and more rigorous method 
to account for the intramolecular reactions in R1A s 
polymerization has been proposed. In this, one defines A,, 
B., C. . . . .  such that A, represents a molecule with n RtA~r 
units without any rings due to intramolecular reactions 
and B,, C,,, etc., represent molecules with n R~Ay units, but 
having one, two, etc., rings respectively (irrespective of 
where they are placed) caused by intramolecular 
reactions. Mole balance equations can then be written for 
each of these species, keeping in mind that A, can cyclize 
(intramolecularly) to give B,,, it can react with Bm 
(intramolecularly) to give B= +,, in addition to reacting 
(intermolecularly) with Am to give A,+,. Similarly, the 
various B,, C,, etc., can cyclize (intramolecularly) to give 
C,, D,, etc., or react (intermolecularly) with Cm to give 
molecules with a higher number of rings. The rate 
constants for intramolecular reaction have been chosen 
according to equation (2) and the mole balance equations 
written for various species in the reaction mass. The 
analysis presented in this paper can be easily extended to 
the polymerization of a mixture of monomers. Lastly the 
theory presented in this work does not account for the 
detailed molecular structure of chains, lik¢ for example 
the various isomers of the chain and the degree of 
branching. It is assumed that the reactivity of a given 
functional group is independent of the chain structure (i.e. 
degree of branching and isomer). In fact, in the framework 
of equal reactivity of functional groups, this assumption 
can always be made, even though the theory does not yield 
information on branching and isomers. Also cyclization is 
known to be affected by chain flexibility and is indirectly 
accounted for by the parameters a and b in Z,.~. 

KINETIC MODEL 

In order to model the intramolecular reactions in step- 
growth polymerization of RA I monomers (with 
functional group A reacting with A), one defines the 
following molecular species: 

A,,= polymer chains with n RAy units (n = 1, 2, 3 ... .  ) 
having no intramolecular bonds (3a) 

B, = polymer chains with n RA I units (n/> nB) having one 
intramolecular bond (3b) 
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C. = polymer chains with n RAy units (n >/nc) having two 
intramolecular bonds (3c) 

D. = polymer chains with n RAy units (n >/riD) having 
three intramolecular bonds (3d) 

P.  = polymer chains with n RAy units (n >/np) having p 
intramolecular bonds (3e) 

Here it is assumed that the maximum number of cyclic 
bonds in the reaction mass is p. It may be recognized that 
intramolecular bond formation occurs only when two 
functional groups of the same polymer chain come close 
to one another and react. Evidently, chain flexibility plays 
a major role in this and there is a minimum chain length 
below which there can be no cyclization. For similar 
reasons, there is a minimum chain length of polymer in 
which two rings could be accommodated, and so on. In 
equations (3), ns, nc, no...  ne are such limits below which 1, 
2, 3 ... p rings respectively cannot be formed on the chain. 

An attempt is now made to enumerate all possible 
reactions in terms of these molecular species. Whenever 
A, reacts with any other molecular species, there is an 
increase in chain length but there is no increase in the 
number of rings. Assuming all reactions as irreversible, 
one can write the reactions for the various species as: 

A,, ko z . 0  Bm m ~> ns (4a) 

k 
A,.+ A.~Am+. m,n>~l (4b) 

k 
Am + B.-*Bm+ . m>~l,n>~ns (4c) 

k 
Arn-k-Cn--.Cm+n m>~ l,n>>.n c (4d) 

Bm ko,Z. ' ' Cm m >/nc (5a) 

k 
Bm+ Cti~D,,+ti m>~ns, n>~nc (5b) 

k 
Bm+D.~Em+ . m>~nB, n>~nD (5c) 

where k o and k are the rate constants for the intra- and 
intermolecular reactions and Z , j  is the average number of 
reactive contacts in a molecule of chain length n in the 
conformation between two functional groups situated j 
intramolecular bonds apart. Zri 4 cannot be evaluated 
analytically because of the change in the chain statistics of 
the polymer molecule with the occurrence of every 
intramolecular bond. Based on Monte Carlo simulation, 
Plat6 and Noah have suggested equation (2) for Z, rij. In the 
kinetic model presented in equations (5), j can take any 
value ranging from a minimum value (which largely 
depends upon the chain flexibility) to a maximum value• If 
this minimum value is approximated as 1 independent of 
the number ofintramolecular bonds on the chain, Z,,j can 
be averaged over all possible values ofj. Ifn is assumed to 
be large, such that the summation can be replaced by an 
integral, the average value of ,Zrij, namely Z,, is given by 

Z,, = ½g(n)(n + 1) + h(n) (6) 

We have already stated that the maximum number of 
rings does not exceed p, which means that P,, reacts with 
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A,, only and does not undergo any intramolecular 
reaction, i.e. 

k 
P,. + A.--*P,. +. m>~np (7) 

This is done for book-keeping purposes to ensure that all 
the reacting species are properly accounted for. 
Computations have shown that the average number of 
intramolecular bonds is usually not very large 4° and p in 
practice can be chosen such that equation (7) does not 
introduce any significant error. 

Using the reaction mechanism written in equations (4) 
to (7), it is possible to write down the mole balance 
equations for various species as follows. It is observed that 
two functional groups must react to form either an intra- 
or intermolecular linkage, which means that Ati, B,,, C ...... 
and P. must have (n f -  2n + 2), (n f -  2n), (n f -  2n - 2) . . . .  
and (n f -  2n + 2 -  2p) unreacted functional groups 
respectively• For chain lengths n>~ np, the various mole 
balance equations can now be given• 

For n >/rip: 

d[A._l " - '  
=k ~ (ar + l ) {a(n- r )+ I } [ A , ] [ A t i _ , ]  

dt ~= i 

- 2k(an + 1)[A.] (ai + 1)[A,] + ai[Bi] 
i i = n  B 

i=ri  C i = n p  

- 2koZti[A,, ] (8a) 

d [ B . ]  

dt 
= 2koZ, ti[Ati ] - 2koZ.[B,, ] 

n - - r l  B 

+ 2k 2 (ar+ 1)a(n-r)[A,][Bri_,] 
r = l  

($1 -2ka.[S. (ai+ 1)[AO + ai[B,] 
i =  i = n  B 

+ :L + 
i = n  C i = n  o 

(8b) 

d[V.] 

dt 

n - - r i p  

- 2koZ.[O.] + 2k ~ (ar + 1){a(n - r ) -  p + 1}[A,][Pti_,] 
r = l  

t i  - -  tl C 

+ 2k ~. ar{a(m- r ) -  o + 1}[B,]I-O._,] + . • .  
r =n  B 

where 

or) 

- 2k(an- p + 1)[PJ ~ (ai + 1)[AI] (8c) 
i = 1  

a = (f-- 2)/2 (8d) 
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It has already been noted that there is a minimum chain 
length below which there is no cyclization. The following 
special condition arises when these minimum limits 
(nB, no no, etc.) are different. It has earlier been observed 
that the presence of cyclic rings changes the chain 
statistics, making it stiffer with increasing number 
of cyclic rings. It is therefore expected in general that 
np > no > nn > nm > .... If there is a molecule Mn whose 
chain length lies between nn and riM, it cannot cyclize to 
form N.. In the following equation, this special con- 
dition has been accounted for and the corresponding 
mole balance relations for np > n> no can be given. 

For n o < n <  np: 

n --ni l  

dEB. ]  = 2ko2nEAn ] + 2k ~ (ar + 1)a(n- r)[A,]EB._,] 
dt , :  1 

- 2koZn[B,,.] - 2kan[Bn] (ai + 1)[Ai] 
1 

+ ~ a i [ B J + . . . +  ~ (ai-o+l)['OJ) 
i=nil i : n  0 

(10b) 

For 1 < n < na: 

d[A1]=2k(a+ 1)[A,] ~ (ai4- I)[AJ + ~ ai[B,] + ... 
dt t= 1 i=nil 

d[A,d = kn~(ar-- + 1){a(n - r) + 1 } [A, ]  [A,,_ ,] 
dt ,=1 

d[B.] 
dt 

- 2koZ, n[A.] - 2k(an + I)[An]~,~I (ai + I)[AJ 

+ ~ai[Bi]+...+ ~ (ai-p+l)[PJ) 
i=n B i : n p  

n - - n  B 

- - = 2 k o Z ,  n[An] +2k ~ (ar+l)a(n-r)[A,][B._,] 
r = l  

(9a) 

+ ~ (ai-p+l)[PJ (lla) 
i = n p  

d[A~ 
n - - I  

= k ~ (ar + 1){a(n - r) + 1 } [A, ]  [A n_,]  
dt r = l  

-2(an+l)[&] (ai+l)[A,] + ai[B3 + . . .  
i =  i = n  B 

+ ~. (a i -p+l ) [P, ] )  ( l lb) 
i : n p  

- 2k,Z,[B,.] - 2kan[B,. ai + 1)[Ai] 
i = 

+ ~ a i [BJ+  . . . )  
i=n B 

(9b) 

d[O,3 = 2koZ~,,[N, 3 _ 2koZ.l_Oj 
dt 

n - n o 

+2k ~ (ar+ 1){a(n-r)-o+ 1}[g,][O._,] + . . .  
r = l  

-2k(an-o+l)[O. ai+ 1)[AJ + 
i 

(9c) 

The following mole balance relations are obtained 
similarly. 

For  nN< n <  no: 

For na< n< nc: 

d[A,~ n- 1 
d---~ = k ~ (ar + 1){a(n - r) + 1 } [A,] [A._,] - 2koZ,,[A,_] 

r = l  

-2k(an+ 1)[A (ai+ 1)[Ai] 
i 

+ ~ ai[Bi]+... + ~ (ai-pq-1)[Pi]) 
i=n  B i=np 

(10a) 

METHOD OF COMPUTATION 

The solution of equations (8) to (11) cannot be found 
analytically and in this work we have presented numerical 
results computed on a DEC 1090 computer using the 
Runge-Kutta algorithm of fourth order. It has already 
been pointed out earlier a9-42 that the average number of 
rings per molecule is small even near the gel point. In view 
of this, it is assumed that the maximum number of cyclic 
rings on polymer chains does not exceed 2, which implies 
that there are only species A n, B. and C. in the reaction 
mass. It is also assumed that because ofsteric hindrance: 

ns= nc=4 (12) 

It may be recognized that the formation of C. through the 
combination of B m plus Bm cannot occur for n < 8, which 
means that the terms accounting for this in equations (8) 
to (11) must be modified accordingly. The correct 
equations governing the molecular weight distribution 
are given in Table 1. The values of 2~. have been 
determined by empirically curve-fitting the Monte Carlo 
results of Plat6 and Noah 5a and are summarized in Table 
2. 

The mole balance equations of Table 1 have been 
nondimensionalized using 

a. = [A.]/[A1] o (13a) 

b,,= [Bj/[A1]o (13b) 

c. = [C.]/[AI] o (13c) 

and 

kao=ko/k n>~4 (13d) 

x=k[A1]ot (13e) 
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where [A~]o is the concentration of the (pure) monomer 
RAy fed to the batch reactor. The nondimensional 
differential equations have been solved with incremental 
time, x, as 0.001 to obtain numerically stable solutions. 
We have calculated the total count of repeat units, RC, as 

N a N b  N c  

RC= E na,,+ E nb.+ E nc. (14) 
n = 1 n = 4  1 1 = 4  . 

Table 1 Mole balance equations for various species in batch reactors 
for the case when p = 2 and nB= nc = 4 

(a) For n ~< 3 

d[Al-~] = - d t  2k(a+ 1)[A,](~(ai+ 1)[A,] + ~ai[B,] + ~.(ai-1)[C,]) 

d[A._] , .~1  . 
=K 2. ~ar + 1){a(n-r)+ 1 }[A,][A._,] 

dt ,:~ 

-2k(an+l)[A.  a i+l ) [A, ]+  ai[B,]+ a i -1) [C 
i =  

n>~2 

where Na, Nb and Nc are the number of equations for 
species A,, B, and C, respectively that have been solved 
for obtaining the MWD. Theoretically these should be 
infinity, but for purposes of computation, they are taken 
large enough such that the truncation error (1-RC) is 
kept minimal. In the computer program, Na, Nb and Nc 
are increased whenever either aNa, bNb or cN¢ increase 
beyond 10-s in magnitude. 

As an example, the MWD equations of Table 1 have 
been solved for hexafunctional monomers with increasing 
N~, Nb and N~ as described above. The value of Na is found 
to increase very rapidly and values of Na, Nb and N¢ as a 
function of the conversion PA of functional groups are 
given in Table 3. For the polymerization ofhexafunctional 
monomer without cyclization, gelation would occur 
theoretically at 20% conversion (PA = 0.20) and by the time 
we reach the value OfpA of about 0.19 we are solving a set 
of about 1000 differential equations. By then, the 
computation time increases very rapidly and at present to 
reach the gel point using this kinetic approach appears to 
be a very difficult task. Numerical results presented in this 
paper go up to about 18% conversion of functional groups 
in the polymerization of hexafunctional monomers. 

(b) For 4~<n~<7 

dlA 1 . - x 
L nA =k 2 (at+ 1){a(n-r)+ I}[A,][A._,] - 2koZ.[A.] 
dt ,= x 

- 2k(an+ 1)[A,](2(ai+ 1)[A,] + ~ai[B,] + 2(ai-1)[C,])  

n - 4  

d[B.]a. = 2koZ'..o[ A.] + 2k E [A,][B._,](ar + 1)a(n - 71- 2koZ...[B.] 
u~ ,= x 

- 2kanB.[ a 
• = . =  

n - 4  

d[c,d _ 2to2.[aJ + 2k ~ (ar + 1){a(. - r) - 1}[A.][C.] 
dt ,= a 

- 2 k ( a n -  1)[C.]~(ai + 1)[A/] 

(c) For n t> 8 

n - 1  

d[A'O= k ~ (ar+ l){a(n-r)+ 1 }[A,][A._,] 
dt ,=1 

o0 ~ oo 

- 2koZ.[A,] 

n - 4 

d[B~ = 2ko2.[A._] _ 2ko2.[B. ] + 2k ~. a(ar + l)(n - r)[A,][B._,] 
dt ,= t 

-2kan[B,](,=~ x(ai+ 1)[A,] + ~ ai[BJ) 

n - 4 

dEC,J_ = 2koZ.EB.] + k ~ a 2 r ( n -  r)ES,]Ea,._J 
dt ,=4 

n - 4  

+2k E (at+ 1){a(n--r)- 1}[A,][C._,] 
r = l  

- 2k(an - 1)[C.] ~ (aj + 1)[A j] 
j = l  

Table 2 Values of a and b for various ranges in equation (6) 

Range of n o(n) h(n) 

0-30 5 0.75 
31-50 8 1.50 
51-100 21 1.68 

101-150 40 2.07 

RESULTS AND DISCUSSION 

To check the stability of our computations, we set kdo 
equal to zero and compared our numerical results with 
the analytical solution25: 

[A.] {n(f-  1)}! _ ,,-l. 1 
[Al]o-n!{n~f-f-_~+2}(jp A ~--pA) ' 'I-2'+2 (15) 

The above equation is valid for the case when there is no 
cyclization. Complete agreement was found between the 
analytical solution and our numerically integrated results 
with kdo = 0. For our computations, Z, have been found 
from curve fitting the results of Plat6 and Noah and are 
given in Table 2. Computations were also made assuming 
that up to four ring species exist, which means that the 
reaction mass consisted of species A,,, B,, C, and D,, only. 
It was found that the dimensionless concentrations of 
species D, always remains less than 10-s and in view of 
this the equations given in Table I were found to be 
appropriate for describing the intramolecular reactions in 
the step-growth polymerization of hexafunctional 
monomers. 

Using the computational scheme suggested in this 
paper, results have been obtained for the molecular 

Table 3 Values of Na, Nb and Ne in equation (14) for kao = 0.1 and f =  6 

Reaction 
time, x PA Na Nb Nc RC 

0.001 0.003 100 10 10 1.000000 
0.020 0.057 100 30 10 1.000000 
0.040 0.107 100 30 10 0.999998 
0.050 0.130 100 50 30 0.999993 
0.060 0.153 175 90 30 0.99945 
0.065 0.163 250 130 50 0.999809 
0.069 0.172 325 170 50 0.999515 
0.071 0.176 325 190 50 0.9992879 
0.073 0.181 400 210 50 0.9987988 
0.076 0.188 475 270 70 0.9971317 
0.078 0.193 550 310 70 0.9948202 
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weight distribution of the polymer below the critical 
conversion. In Figures 1, 2 and 3, the weight fraction 
distributions of A,, B, and C, have been plotted for 
various values ofcyclization parameters. The distribution 
of A, in Figure 1 is found to be little affected up to as high a 
value ofkdo as 0.1 and can be described by equation (15) to 
a large extent. By changing the functionality f, the nature 
of this conclusion does not change. This is consistent with 
the observation 25's5-6° made by various experimental 
studies, which find that the effect of the cyclization 
reaction is considerably enhanced on the overall 
distribution only as the gel point is approached. 
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Figure 1 Weight fraction distr ibution of  species A.  at x=0 .069  for 
various values o f f  (p =0.077) 
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Figure 3 WeightfractiondistributionofspeciesC.atx=O.O69forf=6 
for various values of k d (p = 0.077) 

The weight fraction distribution of species B and C are 
shown in Figures 2 and 3. The total amounts of these 
species formed are small and the distributions of these are 
found to decrease monotonically with n. These curves 
broaden in width as kdo is increased. In the range of values 
ofkdo from 0.005 to 0.01, it is negligibly affected whereas 
for values ofkdo beyond 0.01, the MWD begins to broaden 
as seen in Figures 2 and 3. It may be emphasized here that 
there is an artificiality inherent in the balance equations of 
Table I, in which species C has been assumed not to react 
either with itself or with species B. This assumption is 
justified only when the concentration of species C is 
negligibly small. Near the gel point, where the cyclic 
oligomers are formed in larger concentrations, the 
equations of Table I would predict that species A and B 
would all convert to species C, which neither reacts nor 
grows in size. This would imply that, at the gel point, the 
average molecular weight of the polymer is finite, which is 
evidently not correct. It is therefore important that as the 
gel point is approached, in addition to increasing the total 
number of equations (as done in Table 3), one must also 
simultaneously increase the types of species to be able to 
obtain the correct numerical solution. However, up to 
about 18~ conversion, computations have shown that 
defining species having up to a maximum of two 
intramolecular bonds is sufficient because the assumption 
of small concentration of species C in the reaction mass is 
very well satisfied. 

From the M W D  thus calculated, the average chain 
length it, and the polydispersity index p of species A, B 
and C have been calculated and plotted in Figures 4 to 6. 
As the gel point is approached,/~,, as well as p for all these 
species begin to increase rapidly and the value of the latter 
is not limited to 2, as expected in the polymerization of 
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Figure 4 Average chain length and polydispersity index of species A. 
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large chain lengths have a greater tendency to react 
intramolecularly to form B and C. It is thus expected that, 
as the gel point is approached, molecules of very large 
chain length are formed and these would have several 
intramolecular bonds with considerably high probability. 
As has been pointed out above, to carry out the 
computation above about 18~o conversion of functional 
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60 ~ I00 

0 001 0.02 005 004 
x 

Figure 6 Average chain length and polydispersity index of species C. 
versus x for f =  6 

bifunctional monomers. The average chain length of 
species A remains of the order of 2 whereas those of species 
B and C are of  the order of  10 even though the total moles 
of cyclic polymer formed is very small (Figure 7). Figure 8 
shows the average number of cyclic rings in the reaction 
mass, which is found to grow as polymerization 
progresses. This indicates that molecules of species with 
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Total weight of cyclic oligomers in the reaction mass for 
various values of kdo v e r s u s  x 
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Figure 8 Average number of rings per molecule versus x of 
polymerization for various values of kd0 

groups with only three species (A, B and C) is not 
meaningful, but one can deduce what should be 
happening near the gel point. As the gel point is 
approached, larger polymer chains are formed, which 
have a greater tendency to react intramolecularly and, in 
the limit, reaction by this mechanism would dominate, no 
matter how kdo is taken. 

The mathematical formulation presented in this paper 
is completely general and is valid for any functionality all 
the way up to the gel point provided a sufficient number of 
species are defined. If it is indeed done for the above 
problem, one can obtain meaningful results even beyond 
18~o, but to solve it numerically is a difficult proposition. 
One of the approaches that can be taken to get to the gel 
point is to reduce the M W D  equations into moment 
equations for the various species. On doing this, it is found 
that the equations governing the zeroth moments involve 
the first moments, those for the first moments involve the 
second moments, and so on. There is a need to develop a 
moment closure approximation to break this hierarchy of 
equations. The numerical computations presented in this 
work are necessary in order to check the applicability of 
the moment closure approximations. Thus, the present 
computations not only give quantitative results for the 
effect ofcyclization on the M W D  of the polymer formed in 
the pre-gel region, but what is more important, provide a 
framework against which computationally easier 
equations for the moments can be checked. The latter 
method can then be used to go to higher conversions and 
so get the effect of cyclization on the critical conversion. 

monomers: A. Kumar et al. 

CONCLUSIONS 

A general kinetic model accounting for the intramolecular 
reactions in step-growth polymerization of multi- 
functional monomers has been presented, The model is 
valid for any functionality. These equations have been 
rewritten for the specific case ofhexafunctional monomers 
and results have been derived to demonstrate the 
feasibility of numerical computation. 

In the step-growth polymerization of hexafunctional 
RA: monomers for conversions below about 18~, it is 
found that assuming a maximum of two intramolecular 
bonds per molecule is sufficient to describe the cyclization 
reaction very well. This sufficiency was justified by 
comparing the results with those found from the case 
when the reaction mass was assumed to consist of higher 
ring species. In this case, when a maximum of two ring 
species are assumed to exist, species in the reaction mass 
can have zero (A,), one (B,) and two (C,) intramolecular 
bonds. Mole balance equations for each of these species 
are written out and are solved numerically. Computed 
results indicate that large molecules have a higher 
tendency to react intramolecularly. Near the gel point, 
very large polymer molecules are formed (i.e. ~ , - , o ~ )  in 
which case it is expected to react more favourably by an 
intramolecular mechanism than by an intermolecular 
one. 
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